

中山大学物理与天文学院学术报告

中子星物态方程研究新进展

胡金牛

南开大学物理科学学院

hujinniu@nankai.edu.cn

08/04/2022

□ Introduction

- \Box The inner crust of neutron star
- □ The properties of neutron star
- □ The hyperons in neutron star
- □ Summary

1931, L. D. Landau- anticipation:

for stars with M>1.5M^O"density of matter becomes so great that atomic nuclei come in close contact, forming one gigantic nucleus". L. D. Landau, "On the theory of stars," Physikalische Zs. Sowjetunion 1 (1932) 285

1932, J. Chadwick - discovery of a neutron Nature, Feb. 27, 1932

288

L. Landau

we have no need to suppose that the radiation of stars is due to some mysterious process of mutual annihilation of protons and electrons, which was never observed and has no special reason to occur in stars. Indeed we have always protons and electrons in atomic nuclei very close together, and they do not annihilate themselves; and it would be very strange if the high temperature did help, only because it does something in chemistry (chain reactions!). Following a beautiful idea of Prof. Niels Bohr's we are able to believe that the stellar radiation is due simply to a violation of the law of energy, which law, as Bohr has first pointed out, is no longer valid in the relativistic quantum theory, when the laws of ordinary quantum mechanics break down (as it is experimentally proved by continuous-rays-spectra and also

made probable by theoretical considerations).¹ We expect that this must occur when the density of matter becomes so great that atomic nuclei come in close contact, forming one gigantic nucleus.

On these general lines we can try to develop a theory

08/04/2022

周大學

Nat. Aca___

"...supernovae represent the transitions from ordinary stars to neutron stars, which in their final stages consist of extremely closely packed neutrons"; "...possess a very small radius and an extremely high density." Nova is about twenty days and its absolute brightness at maximum may be as high as $M_{vis} = -14^{M}$. The visible

maximum may be as high as $M_{vis} = -14^{M}$. The visible radiation L_{r} of a supernova is about 10⁸ times the radiation of our sun, that is, $L_{\nu} = 3.78 \times 10^{41}$ ergs/sec. Calculations indicate that the total radiation, visible and invisible, is of the order $L_{\tau} = 10^7 L_p = 3.78 \times 10^{48}$ ergs/sec. The supernova therefore emits during its life a total energy $E_{\tau} \geq 10^{5}L_{\tau} = 3.78 \times 10^{53}$ ergs. If supernovae initially are quite ordinary stars of mass $M < 10^{34}$ g, E_{τ}/c^2 is of the same order as M itself. In the supernova process mass in bulk is annihilated. In addition the hypothesis suggests itself that cosmic rays are produced by supernovae. Assuming that in every nebula one supernova occurs every thousand years, the intensity of the cosmic rays to be observed on the earth should be of the order $\sigma = 2 \times 10^{-3} \text{ erg/cm}^2 \text{ sec.}$ The observational values are about $\sigma = 3 \times 10^{-3} \text{ erg/cm}^2$ sec. (Millikan, Regener). With all reserve we advance the view that supernovae represent the transitions from ordinary stars into neutron stars, which in their final stages consist of extremely closely packed neutrons.

08/04/2022

The Chronology of neutron star () 有 闺 大 学

1. February 1931, Zurich. Landau finishes his paper, in which he calculates the maximum mass of white dwarfs and predicts the existence of dense stars which look like giant atomic nuclei.

2. 25 February – 19 March, 1931. Landau in Copenhagen. He most likely discusses his paper with Bohr and Rosenfeld in the period from 28 February (when Rosenfeld arrives) to 19 March.

3. 7 January 1932. Landau submits his paper to Physikalische Zeitschrift der Sowjetunion.

4. End of January 1932. Chadwick became interested in conducting the experiment which led to the discovery of the neutron.

5. 17 February 1932. Chadwick submits his paper on the discovery of the neutron to Nature.

6. 24 February 1932. Chadwick writes a letter to Bohr informing him of the discovery of the neutron.

7. 27 February 1932. Chadwick's paper on the discovery of the neutron is published.

8. 29 February 1932. Landau's paper published.

9. 15–16 December 1933, Stanford. Baade and Zwicky give a talk at a meeting of the American Physical Society suggesting the concept of neutron stars, and their origin in supernova explosions.

10. 15 January 1934. The abstract of the talk by Baade and Zwicky is published. D. Yakovlev, P. Haensel, G. Baym and C. J. Pethick ParXiv: 1210.0682

The theoretical descriptions

5. Volkoff- TOV equation

The equations describing static spherical stars in general relativity

Oppenheimer and Volkoff solved these equations and calculated numerically the structure of non-rotating neutron stars. Maximum mass of a neutron star (in the model of non-interacting neutrons $M_{max} = 0.71 M_{\odot} < M_{max} = 1.44 M_{\odot}$).

08/04/2022

The discovery of neutron star

1967, J. Bell - A pulsating radio source with 1 second period

T=1.3373012 s

The binary neutron star

1974, R. Hulse and J. Taylor Jr. - The first binary pulsar

This discovery earned them the 1993 Nobel Prize in Physics "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation."

08/04/2022

Pulsars are magnetized rotating neutron stars emitting a highly focused beam of electromagnetic radiation oriented long the magnetic axis. The misalignment between the magnetic axis and the spin axis leads to a lighthouse effect

The observation equipments

Jinniu Hu

周大學

The origin of neutron star

11

End points of stellar evolution

Starting Mass	Outcome	Final Mass	Final Size	Density
> 20 M _{Sun}	Black Hole	any	2.95 (M/M _{sun}) km	N/A
$8 < M < 20 M_{Sun}$	Neutron star	< 2-3 M _{Sun}	10 − 20 km	10 ¹⁸ kg/m ³
$0.4 < M < 8 M_{Sun}$	White Dwarfs (Carbon)	< 1.4 M _{Sun}	7000 km	10º kg/m³
$0.08 < M < 0.4 M_{Sun}$	White Dwarfs (Helium)	$0.08 < M < 0.4 M_{Sun}$	14000 km	
$M < 0.08 \ M_{Sun}$	Brown Dwarfs	$M < 0.08 M_{Sun}$	10₅ km	

Birth of a Neutron Star

- The death of a high-mass star (such as Betelgeuse) will leave behind a neutron star
- Initially, the neutron star will be very hot, about 1011 K.
- It will glow mainly in the X-ray part of the spectrum.
- Over its first few hundred years of life, the neutron star's surface cools down to 106 K and continues to glow in the x-ray.
- Young neutron stars are found in supernova remnants.

The observables of neutron star

F. Oezel and P. Freire Annu. Rev. Astron. Astrophys. 54 (2016)401

08/04/2022

The radii and masses

Shapiro delay measurement

The massive neutron star PSR J1614-2230 ($1.928\pm0.017 \text{ M}_{\odot}$), P. B. Demorest, et al., Nature. 467(2010)108 E. Fonseca et al., Astrophys. J. 832, 167 (2016). PSR J0348+0432 ($2.01\pm0.04 \text{ M}_{\odot}$), P. J. Antoniadis et al., Science 340, 1233232 (2013). PSR J0740+6620 ($2.08\pm0.07 \text{ M}_{\odot}$) H. T. Cromartie et al., Nat. Astron. 4, 72 (2020)

M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28

Neutron Star Interior Composition Explorer

The NICER Measurement PSR J0740+6620 (2.08±0.07 Mo,

12.35±0.75 km) H. T. Cromartie et al., Nat. Astron. 4, 72 (2020) M. C. Miller et al. Astrophys. J. Lett. 918(2021)L28 PSR J0030+0451 (1.44±0.15M☉,

13.02±1.24 km) M. C. Miller et al. Astrophys. J. Lett. 887(2019)L42

Neutron star merger

08/04/2022

Jinniu Hu

周大學

Neutron star merger

LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

08/04/2022

Neutron star structure

TOV equation

 dM_r

Tolman-Oppenheimer-Volkoff equation

$$\frac{dP}{dr} = -\frac{G\rho M(r)}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi P r^3}{M(r) c^2}\right) \left(1 - \frac{2GM(r)}{c^2 r}\right)^{-1}$$
$$M(r) = 4\pi \int_0^r \xi^2 \rho(\xi) d\xi$$
$$\rho(r) = \varepsilon(r)/c^2$$

08/04/2022

The equations of state

L. McLerran and S. Reddy Phys. Rev. Lett.122 (2019)122701

Astrophys. 54 (2016)401

Unified framework in nuclear physics

周大学

□ Introduction

- □ The inner crust of neutron star
- $\hfill\square$ The properties of neutron star
- □ The hyperons in neutron star
- □ Summary

Neutron star crust

non-uniform matter

at low density

alpha proton neutron

nuclei

Single nucleon approximation Nuclear statistical equilibrium

> Liquid drop model

D. G. Ravenhall,, C. J. Pethick, and J. R. Wilson, Phys. Rev. Lett. 50(1983)2066

> Thomas-Fermi approximation

K. Oyamatsu, Nucl. Phys. A 561(1993)431

H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A, 637 (1998) 435

H. Togashi, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, Nucl. Phys A961 (2017) 78

> Time-dependent Hartree-Fock method

P. Magierski and P. H. Heenen, Phys. Rev. C 65(2002)045804

> Molecular dynamics (MD) simulations

M. E. Caplan and C. J. Horowitz, Rev. Mod. Phys. 89(2017)041002

Thomas-Fermi approximation () 清 オ ナ 学

non-uniform matter

at low density

> Body-centered cubic lattice

> Parameterized nucleon distribution

> Energy

$$E = E_{bulk} + E_{surface} + E_{Coulomb} + E_{Lattice} + E_{electron}$$

Minimization!

08/04/2022

Semi-empirical mass formula

C. Weizsaecker, Z. Phys. 96(1935)431

$$\begin{split} B(Z,A) \ &= \ a_{\rm V} A - a_{\rm S} A^{2/3} - a_{\rm C} Z(Z-1) A^{-1/3} - a_{\rm sym} \frac{(A-2Z)^2}{A} \\ &+ a_{\rm p} \frac{(-1)^Z [1+(-1)^A]}{2} A^{-3/4} \end{split}$$

Symmetry energy in nuclear matter

$$E_{\text{sym}}(\rho) = S_0 + L\left(\frac{\rho - \rho_0}{3\rho_0}\right) + \frac{K_{\text{sym}}}{2}\left(\frac{\rho - \rho_0}{3\rho_0}\right)^2 + \cdots$$

The slope of symmetry energy

$$L = 3\rho_0 \frac{\partial E_{\text{sym}}(\rho)}{\partial \rho} \Big|_{\rho = \rho_0}$$

08/04/2022

$$\mathcal{L} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - M_{N} - g_{\sigma}\sigma - g_{\omega}\gamma_{\mu}\omega^{\mu} - \frac{g_{\rho}}{2}\tau^{a}\gamma_{\mu}\rho^{a\mu})\psi + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - \frac{1}{4}W_{\mu\nu}W^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{1}{4}c_{3}(\omega_{\mu}\omega^{\mu})^{2} - \frac{1}{4}R_{\mu\nu}^{a}R^{a\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu} + \Lambda_{V}(g_{\omega}^{2}\omega_{\mu}\omega^{\mu})(g_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu}),$$

Equation of motion

$$\begin{split} & \left[i\gamma_{\mu}\partial^{\mu}-(M_{N}+g_{\sigma}\sigma)-g_{\omega}\gamma^{\mu}\omega_{\mu}-\frac{g_{\rho}}{2}\tau^{a}\gamma_{\mu}\rho^{a\mu}\right]\psi=0,\\ & (\partial^{\mu}\partial_{\mu}+m_{\sigma}^{2})\sigma+g_{2}\sigma^{2}+g_{3}\sigma^{3}=-g_{\sigma}\bar{\psi}\psi,\\ & \partial^{\mu}W_{\mu\nu}+m_{\omega}^{2}\omega_{\nu}+c_{3}(\omega_{\mu}\omega^{\mu})\omega_{\nu}+2\Lambda_{V}g_{\omega}^{2}g_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu}\omega_{\nu}=g_{\omega}\bar{\psi}\gamma_{\nu}\psi,\\ & \partial^{\mu}R_{\mu\nu}^{a}+m_{\rho}^{2}\rho_{\nu}^{a}+2\Lambda_{V}g_{\omega}^{2}g_{\rho}^{2}\omega_{\mu}\omega^{\mu}\rho_{\nu}^{a}=g_{\rho}\bar{\psi}\gamma_{\nu}\tau^{a}\psi.\\ & \text{S. Bao, J. N. Hu, Z. W. Zhang, H. Shen, Phys. Rev. C 90(2014)045802} \end{split}$$

08/04/2022

S.

Jinniu Hu

副大學

Family TM1 parameter set

The TM1 Lagrangian

S. S. Bao, J. N. Hu, Z. W. Zhang, H. Shen, Phys. Rev. C 90(2014)045802

$$\mathcal{L} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - M_{N} - g_{\sigma}\sigma - g_{\omega}\gamma_{\mu}\omega^{\mu} - \frac{g_{\rho}}{2}\tau^{a}\gamma_{\mu}\rho^{a\mu})\psi + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - \frac{1}{4}W_{\mu\nu}W^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{1}{4}c_{3}(\omega_{\mu}\omega^{\mu})^{2} - \frac{1}{4}R_{\mu\nu}^{a}R^{a\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu} + \Lambda_{V}(g_{\omega}^{2}\omega_{\mu}\omega^{\mu})(g_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu}),$$

The family TM1 parameter set with different L

L (MeV)	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.8
${g_ ho\over\Lambda_{ m v}}$	13.9714 0.0429	12.2413 0.0327	11.2610 0.0248	10.6142 0.0182	$10.1484 \\ 0.0128$	9.7933 0.0080	9.5114 0.0039	9.2644 0.0000
$\frac{E_{\rm sym}(n_0)~({\rm MeV})}{\Delta r_{np}~({\rm fm})}$	31.38 0.1574	32.39 0.1886	33.29 0.2103	34.11 0.2268	34.86 0.2402	35.56 0.2514	36.22 0.2609	36.89 0.2699

 $E_{\text{sym}} = 28.05 \text{ MeV}, \ n = 0.11 \text{ fm}^{-3}$

5. S. Bao, J. N. Hu, Z. W. Zhang, H. Shen, Phys. Rev. C 90(2014)045802 The symmetry energy fixed at 0.11 fm⁻³ influences the bind energy of Pb least.

08/04/2022

S. S. Bao, J. N. Hu, Z. W. Zhang, H. Shen, Phys. Rev. C 90(2014)045802 The total energy of Wigner-Seitz cell

$$E_{\text{cell}} = \int_{\text{cell}} \varepsilon_{\text{rmf}}(r) d^3 r + \varepsilon_e V_{\text{cell}} + \Delta E_{\text{bcc}},$$

where, ε_e denotes the electron kinetic energy density Nucleon local energy density of RMF model

$$\begin{split} \varepsilon_{\rm rmf} &= \sum_{i=p,n} \frac{1}{\pi^2} \int_0^{k_F^i} dk \, k^2 \sqrt{k^2 + M^{*2}} \\ &+ \frac{1}{2} (\nabla \sigma)^2 + \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{3} g_2 \sigma^3 + \frac{1}{4} g_3 \sigma^4 \\ &- \frac{1}{2} (\nabla \omega)^2 - \frac{1}{2} m_\omega^2 \omega^2 - \frac{1}{4} c_3 \omega^4 + g_\omega \omega (n_p + n_n) \\ &- \frac{1}{2} (\nabla \rho)^2 - \frac{1}{2} m_\rho^2 \rho^2 - \Lambda_v g_\omega^2 g_\rho^2 \omega^2 \rho^2 + \frac{g_\rho}{2} \rho (n_p - n_n) \\ &- \frac{1}{2} (\nabla A)^2 + e A (n_p - n_e), \end{split}$$

08/04/2022

The energy contribution from the different pasta configuration

$$V_{\text{cell}} = \begin{cases} \frac{4}{3}\pi r_{\text{ws}}^3 & \text{(droplet and bubble),} \\ l\pi r_{\text{ws}}^2 & \text{(rod and tube),} \\ 2r_{\text{ws}}l^2 & \text{(slab),} \end{cases}$$

The equations of motion for mean fields

$$-\nabla^2\sigma + m_\sigma^2\sigma + g_2\sigma^2 + g_3\sigma^3 = -g_\sigma(n_p^s + n_n^s),$$

$$\begin{split} -\nabla^2 \omega + m_{\omega}^2 \omega + c_3 \omega^3 + 2\Lambda_{\rm v} g_{\omega}^2 g_{\rho}^2 \rho^2 \omega &= g_{\omega} (n_p + n_n), \\ -\nabla^2 \rho + m_{\rho}^2 \rho + 2\Lambda_{\rm v} g_{\omega}^2 g_{\rho}^2 \omega^2 \rho &= \frac{g_{\rho}}{2} (n_p - n_n), \\ -\nabla^2 A &= e(n_p - n_e), \end{split}$$

08/04/2022

Chemical potentials

$$\mu_p = \sqrt{\left(k_F^p\right)^2 + M^{*2}} + g_\omega \omega + \frac{g_\rho}{2}\rho + eA$$
$$\mu_n = \sqrt{\left(k_F^n\right)^2 + M^{*2}} + g_\omega \omega - \frac{g_\rho}{2}\rho.$$

Beta equilibrium and charge neutrality

$$\mu_n = \mu_p + \mu_e,$$

$$N_e = N_p = \int_{\text{cell}} n_p(r) \, d^3 r.$$

Minimize the total energy density

$$\frac{\partial E_{\mathsf{cell}}}{\partial r_{\mathsf{WS}}} = 0$$

周大學

,

The neutron drip

S. S. Bao, J. N. Hu, Z. W. Zhang, H. Shen, Phys. Rev. C 90(2014)045802

A larger slope L generates a higher neutron drip density. A larger slope L corresponds to a smaller cell radius K. Oyamatsu, K. Iida, Phys. Rev. C 75(2007)015801

The nucleon density

Three dimensional calculations

Three dimensional calculations

The evaluations of pasta phase with density

Y_p=0.5, L=40 MeV

F. Ji, J. N. Hu, H. Shen, Phys. Rev. C 103(2021)055802

08/04/2022
Three dimensional calculations

12

)1

The symmetry energy effect

Magnetic effects in total energy

The magnetic field reduces the total energy S. S. Bao, J. N. Hu, H. Shen, Phys. Rev. C 103(2021)015804

08/04/2022

Magnetic field effect

S. S. Bao, J. N. Hu, H. Shen, Phys. Rev. C 103(2021)01 5804

大

周

Temperature effect

The transition density to uniform matter in TM1e is slightly larger than that in TM1

H. Shen, F. Ji, J. N. Hu, and K. Sumiyoshi, Astrophys. J 891(2019)148

08/04/2022

Jinniu Hu

大

刮

Temperature effect

H. Shen, F. Ji, J. N. Hu, and K. Sumiyoshi, Astrophys. J 891(2019)148

08/04/2022

□ Introduction

- $\hfill\square$ The inner crust of neutron star
- □ The properties of neutron star
- □ The hyperons in neutron star
- □ Summary

TOV equation

08/04/2022

Tolman-Oppenheimer-Volkoff equation

$$\frac{dP}{dr} = -\frac{G\rho M(r)}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi P r^3}{M(r) c^2}\right) \left(1 - \frac{2GM(r)}{c^2 r}\right)^{-1}$$
$$M(r) = 4\pi \int_0^r \xi^2 \rho(\xi) d\xi$$
$$\rho(r) = \varepsilon(r)/c^2$$

The numerical solution of neutron star

$$P(0)=P_{\rm C}$$
 $\epsilon - \rho$ relation
 R , when $P({\rm R})=0$ $M=M(R)$
 $M(0)=0$

Energy density of nuclear matter

$$\begin{split} \varepsilon &= \sum_{i=n,p} \frac{2}{(2\pi)^3} \int_{|\mathbf{k}| < k_F^i} d^3 \mathbf{k} \sqrt{k^2 + M^{*2}} + g_\omega \omega \sum_{i=n,p} \rho_B^i + g_\rho \rho(\rho_B^p - \rho_B^n) \\ &+ \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{3} g_2 \sigma^3 + \frac{1}{4} g_3 \sigma^4 - \frac{1}{2} m_\omega^2 \omega^2 - \frac{1}{4} c_3 \omega^4 - \frac{1}{2} m_\rho^2 \rho^2 - \Lambda_V g_\omega^2 g_\rho^2 \omega^2 \rho^2. \end{split}$$

Pressure of nuclear matter

$$p = \sum_{i=n,p} \frac{2}{3(2\pi)^3} \int_{|\mathbf{k}| < k_F^i} d^3\mathbf{k} \frac{k^2}{\sqrt{k^2 + M^{*2}}} - \frac{1}{2}m_\sigma^2 \sigma^2 - \frac{1}{3}g_2 \sigma^3 - \frac{1}{4}g_3 \sigma^4 + \frac{1}{2}m_\omega^2 \omega^2 + \frac{1}{4}c_3 \omega^4 + \frac{1}{2}m_\rho^2 \rho^2 + \Lambda_V g_\omega^2 g_\rho^2 \omega^2 \rho^2.$$

J. N. Hu, et al., Prog. Theo. Exp. Phys., 2020 (2020) 043D01

國南國大學

The beta equilibrium and charge neutrality conditions

$$\mu_p = \mu_n - \mu_e, \qquad \qquad \rho_p = \rho_e + \rho_\mu.$$

Chemical potential

 $\mu_{\mu} = \mu_{e}.$

$$\mu_i = \sqrt{k_F^{i2} + M_N^{*2}} + g_\omega \omega + g_\rho \tau_3 \rho,$$

$$\mu_l = \sqrt{k_F^{l2} + m_l^2},$$

J. N. Hu, et al., Prog. Theo. Exp. Phys., 2020 (2020) 043D01

08/04/2022

y_R is obtained by solving the equation

$$r\frac{dy(r)}{dr} + y(r)^2 + y(r)F(r) + r^2Q(r) = 0,$$

T. Hinderer, Astrophys. J. 677 (2008) 1216

08/04/2022

Jinniu Hu

副大

The neutron star mass as function of Radius

The symmetry energy affects the neutron star at small mass region

08/04/2022

The threshold in DU process

The symmetry energy affects the threshold of Yp in DU process obviously

08/04/2022

Jinniu Hu

副大學

The tidal deformability

J. N. Hu, et al., Prog. Theo. Exp. Phys., 2020 (2020) 043D01

The tidal deformability as a function of neutron mass

08/04/2022

The crust effects

國南國大學

The EOSs with uniform EOS

F. Ji, J. N. Hu, S. Bao, and H. Shen, Phys. Rev. C, 100 (2019)045801

EOS TM1	Combination crust+core	$M_{ m max}$ (M_{\odot})	<i>R</i> _{1.4} (km)	$\Delta R_{1.4}^{\text{crust}}$ (km)	$k_2^{1.4}$	$C_{1.4}$	$\Lambda_{1.4}$
unified	(L = 40) + (L = 40)	2.12	13.12	1.25	0.095	0.158	652
unified	(L = 111) + (L = 111)	2.18	14.21	1.27	0.103	0.145	1047
nonunified	(L = 40) + (L = 111)	2.18	14.53	1.44	0.092	0.142	1050
nonunified	(L = 111) + (L = 40)	2.12	12.82	0.84	0.110	0.161	671

Jinniu Hu 08/04/2022

The GW190814-2.6M $_{\odot}$ object

Masses in the Stellar Graveyard

THE ASTROPHYSICAL JOURNAL LETTERS, 896:L44 (20pp), 2020 June 20 © 2020. The American Astronomical Society OPEN ACCESS

https://doi.org/10.3847/2041-8213/ab960f

08/04/2022

Jinniu Hu

ALF1

ALF2

AP1-2

BSK20 BSK21

ENG GNH3

GS1 H4

MPA1 MS1

MS1b

NJL

QMC SLY

SQM1-3 PAL6

WWF1 WWF2

WWF3

d to

18

14

16

AP3 AP4 BSK19

A heavy neutron star including the deconfined QCD matter

H. Tan, J. Noronha-Hostler, and N. Yunes, (2020), arXiv:2006.16296

V. Dexheimer, R.O. Gomes, T. Klähn, S. Han and M. Salinas, (2020), arXiv:2007.08493

A super-fast pulsar

N. B. Zhang and B.-A. Li, (2020), arXiv:2007.02513

V. Dexheimer, R.O. Gomes, T. Klähn, S. Han and M. Salinas, (2020), arXiv:2007.08493

A normal neutron star

Y. Lim, A. Bhattacharya, J. W. Holt, and D. Pati, (2020), arXiv:2007.0652

A black hole

I. Tews, et al., (2020), arXiv:2007.06057 F. Fattoyev, C. Horowitz, J. Piekarewicz, and B. Reed, (2020), arXiv:2007.03799

•••

The saturation properties of SNM

	DD-LZ1	DD2	DD-ME1	DD-ME2	DD-MEX	DDV	DDVT	DDVTD
$\rho_{B0} [\mathrm{fm}^{-3}]$	0.1585	0.149	0.152	0.152	0.1518	0.1511	0.1536	0.1536
$E/A[{ m MeV}]$	-16.126	-16.916	-16.668	-16.233	-16.14	-16.097	-16.924	-16.915
$K_0[{ m MeV}]$	231.237	241.990	243.881	251.306	267.059	239.499	239.999	239.914
$E_{\rm sym}[{\rm MeV}]$	32.016	31.635	33.060	32.31	32.269	33.589	31.558	31.817
L[MeV]	42.467	54.933	55.428	51.265	49.692	69.646	42.348	42.583
M_n^*/M	0.558	0.563	0.578	0.572	0.556	0.586	0.667	0.667
M_p^*/M	0.558	0.562	0.578	0.572	0.556	0.585	0.666	0.666

ド

1

The Strong vector potentials

08/04/2022

The equations of state of neutron star

The stiffer EOSs will generate larger speeds of sound

data from: R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. 896, L44 (2020)

Jinniu Hu

副大

The tidal deformabilities of neutron star

□ Introduction

- \Box The inner crust of neutron star
- $\hfill\square$ The properties of neutron star
- □ The hyperons in neutron star
- □ Summary

Strangeness degree of freedom

Jinniu Hu

副大學

The RMF model including the hyperons

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, arXiv: 2203.12357

副大學

$$\mathcal{L}_{\mathrm{DD}} = \sum_{B} \overline{\psi}_{B} \left[\gamma^{\mu} \left(i\partial_{\mu} - \Gamma_{\omega B}(\rho_{B})\omega_{\mu} \right) \right] \mathcal{L}_{\mathrm{NL}} = \sum_{B} \overline{\psi}_{B} \left\{ i\gamma^{\mu}\partial_{\mu} - \left(M_{B} - g_{\sigma B}\sigma - g_{\sigma^{*}B}\sigma^{*}\right) \right\} \mathcal{L}_{\mathrm{NL}} - \Gamma_{\phi B}(\rho_{B})\phi_{\mu} - \frac{\Gamma_{\rho B}(\rho_{B})}{2}\rho_{\mu}\vec{\tau} \right) - \Gamma_{\phi B}(\rho_{B})\phi_{\mu} - \frac{\Gamma_{\rho B}(\rho_{B})}{2}\rho_{\mu}\vec{\tau} \right) - \left(M_{B} - \Gamma_{\sigma B}(\rho_{B})\sigma - \Gamma_{\sigma^{*}B}(\rho_{B})\sigma^{*} - \Gamma_{\delta B}(\rho_{B})\vec{\delta}\vec{\tau} \right) \right] \psi_{B} + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} + \frac{1}{2}\left(\partial^{\mu}\sigma\partial_{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}\right) + \frac{1}{2}\left(\partial^{\mu}\sigma^{*}\partial_{\mu}\sigma^{*} - m_{\sigma^{*}}^{2}\sigma^{*2}\right) + \frac{1}{2}\left(\partial^{\mu}\vec{\delta}\partial_{\mu}\vec{\delta} - m_{\sigma}^{2}\vec{\delta}^{2}\right) - \frac{1}{4}W^{\mu\nu}W_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}W^{\mu\nu}W_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} + \frac{1}{4}c_{3}\left(\omega^{\mu}\omega_{\mu}\right)^{2} - \frac{1}{4}\Phi^{\mu\nu}\Phi_{\mu\nu} + \frac{1}{2}m_{\phi}^{2}\phi^{\mu}\phi_{\mu} - \frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}_{\mu}\vec{\rho}^{\mu}, - \frac{1}{4}\Phi^{\mu\nu}\Phi_{\mu\nu} + \frac{1}{2}m_{\phi}^{2}\phi^{\mu}\phi_{\mu} - \frac{1}{4}\vec{R}^{\mu\nu}\vec{R}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}^{\mu}\vec{\rho}_{\mu} + \Lambda_{v}\left(g_{\omega}^{2}\omega^{\mu}\omega_{\mu}\right)\left(g_{\rho}^{2}\vec{\rho}^{\mu}\vec{\rho}_{\mu}\right),$$

The coupling strengths

The interaction between vector mesons and baryons

$$\Gamma_{\omega\Lambda} = \Gamma_{\omega\Sigma} = 2\Gamma_{\omega\Xi} = \frac{2}{3}\Gamma_{\omega N},$$
$$2\Gamma_{\phi\Sigma} = \Gamma_{\phi\Xi} = -\frac{2\sqrt{2}}{3}\Gamma_{\omega N}, \ \Gamma_{\phi N} = 0,$$
$$\Gamma_{\rho\Lambda} = 0, \ \Gamma_{\rho\Sigma} = 2\Gamma_{\rho\Xi} = 2\Gamma_{\rho N},$$
$$\Gamma_{\delta\Lambda} = 0, \ \Gamma_{\delta\Sigma} = 2\Gamma_{\delta\Xi} = 2\Gamma_{\delta N}.$$

The hyperon-nucleon potentials

$$U_Y^N(\rho_{B0}) = -R_{\sigma Y}\Gamma_{\sigma N}(\rho_{B0})\sigma_0 + R_{\omega Y}\Gamma_{\omega N}(\rho_{B0})\omega_0,$$

Empirical potential values

 $U_{\Lambda}^{N} = -30 \text{ MeV}, \qquad U_{\Sigma}^{N} = +30 \text{ MeV} \qquad U_{\Xi}^{N} = -14 \text{ MeV}$

The coupling strengths

The hyperon-hyperon potentials

$$U^{\Lambda}_{\Lambda}(\rho_{B0}) = -R_{\sigma\Lambda}\Gamma_{\sigma N}(\rho_{B0})\sigma_0 - R_{\sigma^*\Lambda}\Gamma_{\sigma N}(\rho_{B0})\sigma_0^*$$

 $+ R_{\omega Y} \Gamma_{\omega N}(\rho_{B0}) \omega_0 + R_{\phi \Lambda} \Gamma_{\omega N}(\rho_{B0}) \phi_0,$

 $U_{\Lambda}^{\Lambda}(\rho_{B0}) = -10 \text{ MeV},$

周大學

	$R_{\sigma\Lambda}$	$R_{\sigma\Sigma}$	$R_{\sigma\Xi}$	$R_{\sigma^*\Lambda}$
NL3	0.618896	0.460889	0.306814	0.84695
BigApple	0.616322	0.452837	0.305436	0.86313
TM1	0.621052	0.445880	0.307606	0.83710
IUFSU	0.616218	0.453006	0.305389	0.88802
DD-LZ1	0.610426	0.465708	0.302801	0.87595
DD-MEX	0.612811	0.469159	0.304011	0.86230
DD-ME2	0.609941	0.460706	0.302483	0.85758
DD-ME1	0.608602	0.457163	0.301777	0.85828
DD2	0.612743	0.466628	0.303937	0.86420
PKDD	0.610412	0.461807	0.302729	0.84965
TW99	0.612049	0.468796	0.303632	0.85818
DDV	0.607355	0.452777	0.301101	0.87979
DDVT	0.591179	0.399269	0.292391	0.92256
DDVTD	0.591108	0.399023	0.292352	0.92246

The equations of state

The EoSs of neutron star and hydronic star

08/04/2022

Jinniu Hu

刮

The equations of state

The radius-mass relation

The radius-mass relation of neutron star and hydronic star

08/04/2022

The tidal deformabilities

國南國大學

The tidal deformabilities of neutron star and hydronic star

08/04/2022

The properties of neutron star and hydronic star

	Neutron Star						Hyperonic Star						
	$M_{\rm max}/M_{\odot}$	$R_{\rm max}[\rm km]$	$\rho_c [\mathrm{fm}^{-3}]$	$R_{1.4}[\mathrm{km}]$	$\rho_{1.4} [{\rm fm}^{-3}]$	$\Lambda_{1.4}$	$M_{\rm max}/M_{\odot}$	$R_{\rm max}[\rm km]$	$\rho_c [\mathrm{fm}^{-3}]$	$R_{1.4}[\mathrm{km}]$	$\rho_{1.4} [{\rm fm}^{-3}]$	$\Lambda_{1.4}$	$1^{\rm st}$ threshold [fm ⁻³]
NL3	2.7746	13.3172	0.6638	14.6433	0.2715	1280	2.3354	12.5105	0.8129	14.6426	0.2715	1280	0.2804
BigApple	2.6005	12.3611	0.7540	12.8745	0.3295	738	2.2186	11.6981	0.8946	12.8750	0.3295	738	0.3310
TM1	2.1797	12.3769	0.8510	14.2775	0.3200	1050	1.8608	11.9255	0.9736	14.2775	0.3218	1050	0.3146
IUFSU	1.9394	11.1682	1.0170	12.3865	0.4331	510	1.6865	10.8653	1.1202	12.3520	0.4705	498	0.3800
DD-LZ1	2.5572	12.2506	0.7789	13.0185	0.3294	729	2.1824	11.6999	0.9113	12.0185	0.3294	729	0.3294
DD-MEX	2.5568	12.3347	0.7706	13.2510	0.3228	785	2.1913	11.8640	0.8890	13.2510	0.3228	785	0.3264
DD-ME2	2.4832	12.0329	0.8177	13.0920	0.3410	716	2.1303	11.6399	0.9296	13.0920	0.3410	716	0.3402
DD-ME1	2.4429	11.9085	0.8358	13.0580	0.3512	682	2.0945	11.5089	0.9560	13.0578	0.3526	681	0.3466
DD2	2.4171	11.8520	0.8481	13.0638	0.3528	686	2.0558	11.3446	0.9922	13.0630	0.3585	685	0.3387
PKDD	2.3268	11.7754	0.8823	13.5493	0.3546	758	1.9983	11.3789	1.0188	13.5400	0.3642	756	0.3264
TW99	2.0760	10.6117	1.0917	12.1805	0.4720	409	1.7135	10.0044	1.3466	11.9880	0.5710	352	0.3696
DDV	1.9319	10.3759	1.1879	12.3060	0.5035	395	1.5387	9.0109	1.7317	10.8990	0.9538	136	0.3547
DDVT	1.9253	10.0846	1.2245	11.6058	0.5458	302	1.5909	9.6244	1.4675	11.4515	0.6660	266	0.4465
DDVTD	1.8507	9.9294	1.2789	11.4615	0.5790	275	1.4956	9.3019	1.6071	10.9880	0.8570	182	0.4465

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, arXiv: 2203.12357

08/04/2022

The correlations between the coupling strengths

Y. T. Rong, Z. H. Tu, S. G. Zhou, Phys. Rev. C 104(2021)054321

08/04/2022

The Mass-radius relation with different the coupling strengths

08/04/2022

The correlations between R_{ω} and R_{σ} (19)

The properties of neutron star

$R_{\omega\Lambda}$	$R_{\omega\Xi}$	$R_{\omega\Sigma}$	Hyperon thresholds ([fm ⁻³])	$M_{\rm max}$	$R_{\rm max}[\rm km]$	$\rho_c [{\rm fm}^{-3}]$	$R_{1.4}[\text{km}]$	$\rho_{1.4} [\text{fm}^{-3}]$	$\Lambda_{1.4}$
0.6	0.6	0.6	Λ(0.3089), Ξ⁻(0.5245) , Σ ⁻ (0.9032), Ξ ⁰ (1.0710), Σ ⁰ (1.4447)	1.6645	13.2465	0.7251	12.2770	0.3255	1055
0.6	0.6	0.8	$\Lambda(0.3089), \Xi^{-}(0.5245), \Xi^{0}(1.0759)$	1.6645	13.2465	0.7251	12.2770	0.3255	1055
0.6	0.6	1.0	$\Lambda(0.3089), \Xi^{-}(0.5245), \Xi^{0}(1.0759)$	1.6645	13.2465	0.7251	12.2770	0.3255	1055
0.6	0.8	0.6	Λ(0.3089) , Σ ⁻ (0.6106), Ξ ⁻ (0.6394), Ξ ⁰ (1.3176), Σ ⁰ (1.3237)	1.6733	13.1347	0.7456	12.2770	0.3255	1055
0.6	0.8	0.8	Λ(0.3089), Ξ⁻(0.6306) , Σ ⁻ (1.2072), Ξ ⁰ (1.3924), Σ ⁰ (1.8611)	1.6742	13.1101	0.7456	12.2770	0.3255	1055
0.6	0.8	1.0	$\Lambda(0.3089), \Xi^{-}(0.6306), \Xi^{0}(1.3989)$	1.6742	13.1101	0.7456	12.2770	0.3255	1055
0.6	1.0	0.6	Λ(0.3089), Σ⁻(0.6106) , Σ ⁰ (1.2995), Σ ⁺ (1.4989)	1.6736	13.1111	0.7514	12.2770	0.3255	1055
0.6	1.0	0.8	Λ(0.3089) , $\Sigma^{-}(0.7830)$, $\Xi^{-}(0.8546)$, $\Sigma^{0}(1.7530)$, $\Xi^{0}(1.8356)$	1.6757	13.0391	0.7635	12.2770	0.3255	1055
0.6	1.0	1.0	$\Lambda(0.3089), \Xi^{-}(0.8237), \Sigma^{-}(1.7052), \Xi^{0}(1.8870)$	1.6757	13.0391	0.7635	12.2770	0.3255	1055
0.8	0.6	0.6	Λ(0.3294), Ξ ⁻ (0.4485), Σ ⁻ (0.6979), Ξ ⁰ (0.8050), Σ ⁰ (1.0959)	1.8225	13.0424	0.7615	12.2775	0.3200	1050
0.8	0.6	0.8	$\Lambda(0.3294), \Xi^{-}(0.4485), \Xi^{0}(0.8087)$	1.8225	13.0423	0.7612	12.2775	0.3200	1050
0.8	0.6	1.0	$\Lambda(0.3294), \Xi^{-}(0.4485), \Xi^{0}(0.8087)$	1.8225	13.0423	0.7612	12.2775	0.3200	1050
0.8	0.8	0.6	Λ(0.3294), Σ⁻(0.5009), Ξ⁻(0.5150) , Ξ ⁰ (0.9242), Σ ⁰ (0.9501)	1.8547	12.8733	0.7972	12.2775	0.3200	1050
0.8	0.8	0.8	$\Lambda(0.3294), \Xi^{-}(0.5103), \Sigma^{-}(0.8429), \Xi^{0}(0.9545), \Sigma^{0}(1.3483)$	1.8619	12.7947	0.8135	12.2775	0.3200	1050
0.8	0.8	1.0	$\Lambda(0.3294), \Xi^{-}(0.5103), \Xi^{0}(0.9589)$	1.8619	12.7947	0.8135	12.2775	0.3200	1050
0.8	1.0	0.6	Λ(0.3294), Σ⁻(0.5009) , Σ ⁰ (0.9200), Σ ⁺ (1.0661), Ξ ⁻ (1.1906)	1.8603	12.8329	0.8026	12.2775	0.3200	1050
0.8	1.0	0.8	Λ(0.3294), Σ ⁻ (0.5967), Ξ ⁻ (0.6220), Σ ⁰ (1.1906), Ξ ⁰ (1.2128)	1.8799	12.6868	0.8316	12.2775	0.3200	1050
0.8	1.0	1.0	Λ(0.3294), Ξ⁻(0.6135) , Σ ⁻ (1.1163), Ξ ⁰ (1.2699), Σ ⁰ (1.8870)	1.8828	12.6492	0.8371	12.2775	0.3200	1050
1.0	0.6	0.6	$\Lambda(0.3579), \Xi^{-}(0.4186), \Sigma^{-}(0.6050), \Xi^{0}(0.6947), \Sigma^{0}(0.9589)$	1.9170	13.0352	0.7661	12.2775	0.3200	1050
1.0	0.6	0.8	$\Lambda(0.3579), \Xi^{-}(0.4128), \Xi^{0}(0.6979), \Sigma^{-}(1.4852), \Sigma^{0}(1.5409)$	1.9174	12.9932	0.7795	12.2775	0.3200	1050
1.0	0.6	1.0	$\Lambda(0.3579),\ \Xi^-(0.4128),\ \Xi^0(0.6979)$	1.9174	12.9932	0.7795	12.2775	0.3200	1050
1.0	0.8	0.6	$\Lambda(0.3579), \ \Sigma^{-}(0.4506), \ \Xi^{-}(0.4590), \ \Xi^{0}(0.7617), \ \Sigma^{0}(0.8013)$	1.9736	12.8272	0.8047	12.2775	0.3200	1050
1.0	0.8	0.8	$\Lambda(0.3579), \Xi^{-}(0.4548), \Sigma^{-}(0.6947), \Xi^{0}(0.7759), \Sigma^{0}(1.1061)$	1.9878	12.7682	0.8093	12.2775	0.3200	1050
1.0	0.8	1.0	$\Lambda(0.3579), \ \Xi^-(0.4548), \ \Xi^0(0.7759)$	1.9879	12.7682	0.8093	12.2775	0.3200	1050
1.0	1.0	0.6	Λ(0.3579), Σ ⁻ (0.4506), Ξ ⁻ (0.6726), Σ ⁰ (0.7617), Σ ⁺ (0.8826)	1.9898	12.7706	0.8146	12.2775	0.3200	1050
1.0	1.0	0.8	Λ(0.3579), Σ ⁻ (0.5126), Ξ ⁻ (0.5221), Ξ ⁰ (0.9074), Σ ⁰ (0.9328)	2.0275	12.6470	0.8254	12.2775	0.3200	1050
1.0	1.0	1.0	Λ(0.3579), Ξ⁻(0.5197) , Σ ⁻ (0.8546), Ξ ⁰ (0.9328), Σ ⁰ (1.4447)	2.0363	12.5920	0.8327	12.2775	0.3200	1050

08/04/2022

Jinniu Hu

間大學

□ Introduction

- \Box The inner crust of neutron star
- □ The properties of neutron star
- □ The hyperons in neutron star

Summary

國南國大學

The neutron star is a natural laboratory to check the nuclear many-body methods

The pasta structure in the inner crust was investigated with the effects of symmetry energy, magnetic field and temperature.

Properties of neutron star were calculated within RMF model

The strangeness degree of freedom was discussed in neutrons star.

Summary

Inner Crust	S. S. Bao, J. N. Hu, Z. W. Zhang, H. Shen, Phys. Rev. C 90(2014)045802 S. S. Bao and H. Shen, Phys. Rev. C 91(2015)015807 S. S. Bao, J. N. Hu, H. Shen, Phys. Rev. C 103(2021)015804 F. Ji, J. N. Hu, H. Shen, Phys. Rev. C 103(2021)055802
Out core	 J. N. Hu and H. Shen, Phys. Rev. C 95(2017)025804 Y. Zhang, J. N. Hu, and P. Liu, Int. J. Mod. Phys. E 28(2019)1950094 F. Ji, J. N. Hu, S. S. Bao, and H. Shen, Phys. Rev. C, 100 (2019)045801 J. N. Hu, et al., Prog. Theo. Exp. Phys., 2020 (2020) 043D01 C. Wang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 897(2020)96 K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 904(2020)39
Baryon degrees of freedom	Z. Y. Zhu, A. Li, J. N. Hu, and H. Sagawa, Phys. Rev. C, 94 (2016)045803 X. Y. Xing, J. N. Hu and H. Shen, Phys. Rev. C 95(2017)054310 Y. Zhang, J. N. Hu, and P. Liu, Phys. Rev. C 97(2018)015805 K. Huang, J. N. Hu, Y. Zhang, and H. Shen, arXiv: 2203.12357
Hadron-quark phase	M. Ju, X. Wu, F. Ji, J. N. Hu, and H. Shen, Phys. Rev. C, 103 (2021)025809 M. Ju, J. N. Hu, and H. Shen, Astrophys. J. 923(2021)250 K. Huang, J. N. Hu, Y. Zhang, and H. Shen, in preparation
EOS table	H. Shen, F. Ji, J. N. Hu, and K. Sumiyoshi, Astrophys. J 891(2019)148 H. Sumiyoshi, et al., Astrophys. J 887(2019)110 F. Ji, J. N. Hu, S. S. Bao, and H. Shen, Phys. Rev. C, 102 (2020)015806

Thank you very much!

My collaborators:

- Mr. Chencan Wang
- Ms. Kaixuan Huang
- Ms. Min Ju
- Dr. Fan Ji
- Dr. Shishao Bao
- Dr. Ying Zhang
- Prof. Ang Li
- Prof. Hong Shen

(Nankai Univ.) (Nankai Univ.) (Nankai Univ.) (Nankai Univ.) (Shanxi Normal Univ.) (Tianjin Univ.) (Xiamen Univ.) (Nankai Univ.)

Magnetic field effect

Magnetic field effect

Proton scalar and vector densities

$$n_p^s = \frac{eBM^*}{2\pi^2} \sum_{\nu} \sum_{s} \left(\frac{\sqrt{M^{*2} + 2\nu eB} - s\kappa_p B}{\sqrt{M^{*2} + 2\nu eB}} \right)$$
$$\times \ln \left| \frac{k_{F,\nu,s}^p + E_F^p}{\sqrt{M^{*2} + 2\nu eB} - s\kappa_p B} \right|,$$
$$n_p = \frac{eB}{2\pi^2} \sum_{\nu} \sum_{s} k_{F,\nu,s}^p,$$

Proton energy densities

$$\varepsilon_p = \frac{eB}{4\pi^2} \sum_{\nu} \sum_{s} \left[k_{F,\nu,s}^p E_F^p + (\sqrt{M^{*2} + 2\nu eB} - s\kappa_p B)^2 \right] \times \ln \left| \frac{k_{F,\nu,s}^p + E_F^p}{\sqrt{M^{*2} + 2\nu eB} - s\kappa_p B} \right|,$$

S. S. Bao, J. N. Hu, H. Shen, Phys. Rev. C 103(2021)015804

08/04/2022

國南國大學

Fermi-Dirac distribution

$$f_{i\pm}^k = \{1 + \exp\left[(\sqrt{k^2 + M^{*2}} \mp \nu_i)/T\right]\}^{-1},$$

The number density of protons or neutrons

$$n_i = \frac{1}{\pi^2} \int_0^\infty dk \; k^2 (f_{i+}^k - f_{i-}^k).$$

The energy density

$$\begin{split} \epsilon &= \sum_{i=p,n} \frac{1}{\pi^2} \int_0^\infty dk \; k^2 \; \sqrt{k^2 + M^{*2}} \left(f_{i+}^k + f_{i-}^k \right) \\ &+ \frac{1}{2} m_\sigma^2 \sigma^2 + \frac{1}{3} g_2 \sigma^3 + \frac{1}{4} g_3 \sigma^4 \\ &+ \frac{1}{2} m_\omega^2 \omega^2 + \frac{3}{4} c_3 \omega^4 + \frac{1}{2} m_\rho^2 \rho^2 + 3 \Lambda_{\rm v} (g_\omega^2 \omega^2) (g_\rho^2 \rho^2), \end{split}$$

New DDRMF parameterizations

DD-LZ1

大

刮

82

The Lagrangian of DDRMF model

$$\begin{split} \mathcal{L}_{DD} &= \sum_{i=p, n} \overline{\psi}_i \left[\gamma^{\mu} \left(i \partial_{\mu} - \Gamma_{\omega}(\rho_B) \omega_{\mu} - \frac{\Gamma_{\rho}(\rho_B)}{2} \gamma^{\mu} \vec{\rho}_{\mu} \vec{\tau} \right) - \left(M - \Gamma_{\sigma}(\rho_B) \sigma - \Gamma_{\delta}(\rho_B) \vec{\delta} \vec{\tau} \right) \right] \psi_i \\ &+ \frac{1}{2} \left(\partial^{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^2 \sigma^2 \right) + \frac{1}{2} \left(\partial^{\mu} \vec{\delta} \partial_{\mu} \vec{\delta} - m_{\delta}^2 \vec{\delta}^2 \right) \\ &- \frac{1}{4} W^{\mu\nu} W_{\mu\nu} + \frac{1}{2} m_{\omega}^2 \omega_{\mu} \omega^{\mu} - \frac{1}{4} \vec{R}^{\mu\nu} \vec{R}_{\mu\nu} + \frac{1}{2} m_{\rho}^2 \vec{\rho}_{\mu} \vec{\rho}^{\mu}, \end{split}$$

The density dependent coupling constants

for σ and ω mesons $\Gamma_i(\rho_B) = \Gamma_i(\rho_{B0}) f_i(x)$, with $f_i(x) = a_i \frac{1 + b_i (x + d_i)^2}{1 + c_i (x + d_i)^2}$, $x = \rho_B / \rho_{B0}$,

for ρ and δ mesons

 $\Gamma_i(\rho_B) = \Gamma_i(\rho_{B0}) \exp[-a_i(x-1)].$

K. Huang, J. N. Hu, Y. Zhang, and H. Shen, Astrophys. J. 904(2020)39

周大學

Density-dependent coupling constants

sity-depend	dent co	oupli	ng	cons	tan	ts			了度] 大	學
002		DD-LZ1		DD2	DD-ME1	DD-ME2	DD-MEX	DDV	DDVT	DDVTD	
	$m_n[\text{MeV}]$ $m_n[\text{MeV}]$	938.900000 938.900000	m_n m_n	939.56536 938.27203	939.0000 939.0000	939.0000 939.0000	939.0000 939.0000	939.565413 938.272081	939.565413 938.272081	939.505413 938.272081	
DD AAE1	$m_{\sigma}[{ m MeV}]$	538.619216	m_{σ}	546.212459	549.5255	550.1238	547.3327	537.600098	502.598602	502.619843	
DD-MEI	$m_{\omega}[\text{MeV}]$	783.0000	m_{ω}	783.0000	783.0000	783.0000	783.0000	783.0000	783.0000	783.0000	
	$m_{\rho}[\text{MeV}]$	769.0000	$m_{ ho}$	763.0000	763.0000	763.0000	763.0000	763.0000	763.0000	763.0000	
DD-ME2	$\Gamma_{\sigma}(0)$	12.001429	$\Gamma_{\sigma}(\rho_{B0})$	10.686681	10.4434	10.5396	10.7067	10.136960	8.382863	980.0000 8.379269	
	$\Gamma_{\omega}(0)$	14.292525	$\Gamma_{\omega}(\rho_{B0})$	13.342362	12.8939	13.0189	13.3388	12.770450	10.987106	10.980433	
DD_MFX	$\Gamma_{ ho}(0)$	15.150934	$\Gamma_{\rho}(\rho_{B0})$	7.25388	7.6106	7.3672	7.2380	7.84833	7.697112	8.06038	
	$\Gamma_{\delta}(0)$		$\Gamma_{\delta}(\rho_{B0})$							0.8487420	
$\mathbf{D}\mathbf{D}$ 71	$\rho_{B0} [\mathrm{fm}^{-3}]$	0.158100	ρ_{B0}	0.149	0.152	0.152	0.153	0.1511	0.1536	0.1536	
UU-LZI	a_{σ} b_{σ}	1.062748 1.763627	a_{σ} b_{σ}	0.634442	1.3854 0.9781	1.3881	1.3970 1.3350	1.20993 0.21286844	0.19210314	0.19171263	
	c_{σ}	2.308928	c_{σ}	1.005358	1.5342	1.7057	2.0671	0.30798197	0.27773566	0.27376859	
DDV	d_{σ}	0.379957	d_{σ}	0.575810	0.4661	0.4421	0.4016	1.04034342	1.09552817	1.10343705	
	a_ω	1.059181	a_{ω}	1.369718	1.3879	1.3892	1.3936	1.23746	1.16084	1.16693	
	b_{ω}	0.418273	b_{ω}	0.496475	0.8525	0.9240	1.0191	0.03911422	0.04459850	0.02640016	
	c_{ω}	0.538663 0.786649	c_{ω}	0.817753	1.3566 0.4957	1.4620 0.4775	1.6060 0.4556	0.07239939 2.14571442	0.06721759	0.04233010 2 80617483	
	a_{ω}	0.776095	a_{ω}	0.518903	0.5008	0.5647	0.4350	0.35265899	0.54870200	0.55795902	
DDVTD	a_{δ}	_	a_{δ}	_	_	_		_		0.55795902	

08/04/2022